

# **GEOTECHNICAL ENGINEERING REPORT**

AIMRIGHT Project No. 13070623 August 3, 2023

**OMPA Waynoka Transmission Line** 

Prepared for: CEC Corporation



#### **Construction Materials Testing • Special Inspections • Geotechnical Engineering**

August 3, 2023

CEC Corporation 4617 East 91<sup>st</sup> Street Tulsa, OK 74137 (918) 663-9401

Attn: Joel Blair, P.E., joel.blair@connectcec.com

Re: Geotechnical Engineering Report | Project No. 13070623 OMPA Waynoka, Transmission Line Waynoka, OK

AIMRIGHT is pleased to submit this report for the proposed construction at the referenced project sites. The Boring Location Plans, Boring Logs, and other supporting data are attached to this report. Our Scope of Services consisted of completing six (6) soil test borings (borings) (B-1 to B-6) within the locations as designated by you; performing selective laboratory testing of the soil samples obtained; and providing a summary report to include estimated soil parameters for the proposed drilled pier foundation axial design and lateral load analysis.

Our Scope of Services did not include analysis of any rapid drawdown of water levels, potential seismic hazards, liquefaction potential analysis, surveying of the existing topography boring elevations/locations, quantity estimates, preparation of plans or specifications, or the identification and evaluation of environmental aspects of the project sites.

#### Field Exploration and Laboratory Testing

The borings were advanced to depths of 30 to 50 feet using an ATV-mounted drill rig equipped with an automatic hammer and continuous flight augers. At regular intervals within the borings, representative soil samples were obtained using a standard 2-inch outside diameter split-barrel sampler in general compliance with American Society of Testing and Materials (ASTM) Standard Test Method for Standard Penetration Test (SPT) and Split-Barrel Sampling of Soils (ASTM D1586) standards for visual classification based on texture and plasticity and to evaluate the consistency and general engineering properties of the subsurface soils.

During the drilling process, all encounters with groundwater, if any, were recorded. Upon completion of drilling, the borings were backfilled per OWRB requirements. The samples obtained from the exploration were transported to our laboratory for selective testing.

#### Laboratory Testing

Laboratory tests were conducted on selected samples in general accordance with the American Association of State and Highway Transportation Officials (AASHTO) and ASTM standards. The laboratory testing performed consisted of determining the moisture content, liquid and plastic limits, and sieve analysis of material (No. 200 wash method). The results of the laboratory testing are presented on the Boring Logs.

#### **Drilled Pier Recommendations**

The attached Drilled Pier Design Parameter tables summarize the general estimated soil/rock parameters that may be utilized to assist in axial load design and lateral load analysis for each boring location. The project structural engineer should determine the final foundation sizes based on the actual design loads, building code requirements, and other structural considerations.

Straight-sided drilled piers with a minimum pier diameter of eighteen (18) inches may be used to support the proposed structures. Utilizing maximum column loads of 10 to 20 kip, we estimate that foundation settlements for the structures will be at or less than 1 inch for piers bearing in the applicable soil or rock stratum.

Installation of the drilled piers and placement of concrete within the piers should be performed in accordance with the most recent ACI Specifications and installation monitoring shall be observed under supervision by AIMRIGHT. A representative of the geotechnical engineer should observe the drilled pier installation to verify that the recommend bearing materials are encountered and sufficiently penetrated as well as to observe the concreting techniques.

We anticipate the near-surface soils at the site can be excavated using conventional drill rigs with sufficient torque and ability. Our experience indicates rock in a weathered, boulder, and/or massive form may vary erratically in location and depth within the referenced site. Therefore, there is always a potential that these materials could be encountered at shallower depths between the boring locations and should be anticipated during construction.

The drilling rig should be equipped with earth augers and rock augers that contain conical carbide-tipped teeth and other necessary tools to excavate, clean and level rock bottoms properly, and without construction delay. The contractor should assess the subsurface conditions prior to mobilizing and should be prepared to utilize other techniques such as rock coring, jack-hammering, or other suitable methods to reach planned pier bottom depths, especially if auger refusal was encountered.

Following drilling, loose, or disturbed materials and any accumulated water should be removed from the bottom of the drilled piers prior to concrete placement. To facilitate construction, reinforcing steel should be ready and on site, and concrete should be available within a very short period for placement after excavation is completed. Drilled pier excavations must not set overnight prior to placing concrete.

Groundwater and/or caving was encountered in some of the borings. Therefore, the need for casings may be required. Water traveling through soil and rock is often unpredictable and may be present in other areas at shallower depths. Due to the seasonal changes in groundwater and the unpredictable nature of groundwater paths, groundwater levels can fluctuate.

Where casings are used, it is recommended that the concrete have a slump in the range of 5 to 7 inches to reduce the potential of arching when removing the casing. When removing the casing, the concrete inside the casing should be maintained at enough level to reduce any earth and hydrostatic pressure outside the casing during removal.

Concrete slump should be at least 5 inches, and generally in the range of 5 to 7 inches; however, a higher slump may be used to increase fluidity if appropriate for the concrete mix used. An uninterrupted supply and placement of concrete is recommended to produce a monolithic shaft. The maximum size of the concrete aggregate should not exceed one-third of the minimum clear spacing between individual reinforcing bars or bundles.

#### **Driven Pile Recommendations**

Driven steel H-piles (HP12x53, AASHTO M270 Grade 50) utilizing side and end bearing capacities may be used to support the proposed structure(s) at the location for boring B-2. The allowable total bearing and uplift capacities for the stated driven pile depths may be utilized for design as outlined in the table below. Utilizing maximum loads stated in the table below, we estimate that foundation settlements (tip) and uplift displacements (top) for the piles will be at or less than 1 inch.

| Driven Pile<br>Tip Depth<br>Below<br>Existing<br>Ground<br>Surface<br>(ft) | Allowable<br>Total<br>Bearing<br>Capacity<br>(FS ≥ 2.5)<br>(kip) | Allowable<br>Uplift<br>Capacity<br>(FS ≥ 2.5)<br>(kip) |
|----------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|
| 20                                                                         | 9                                                                | 10                                                     |
| 25                                                                         | 14                                                               | 15                                                     |
| 30                                                                         | 16                                                               | 21                                                     |
| 35                                                                         | 19                                                               | 26                                                     |
| 40                                                                         | 23                                                               | 30                                                     |
| 45                                                                         | 28                                                               | 36                                                     |

Interpretation of groundwater table should be approximated within the water level encountered during drilling and/or at the completion of drilling at this site. For location at boring B-2, the groundwater table was interpreted to be at as high as 13.5 feet for recommendations provided in the table above. We anticipate the piles at the boring B-2 site can be driven using conventional driving hammers through the existing native soils without encountering any adverse driving resistance and obstructions are not anticipated.

Installation of the driven piles should be performed in general accordance <u>Section 514</u> of the current Oklahoma Department of Transportation (ODOT) Standard Specification for Highway Construction. Installation monitoring shall be observed under supervision by AIMRIGHT. A representative of the geotechnical engineer should observe the driven pier installation to observe the driving equipment, materials, and techniques.

#### Limitations

This analysis is based on our observations at the sites, interpretation and analysis of the field and laboratory data obtained during this exploration, and our experience with previous exploration and testing with similar projects. Subsurface conditions in unexplored locations may vary from those encountered. If structure location or elevations are changed, we request that we be advised so that we may re-evaluate our recommendations.

The recommendations provided are based in part on project information provided to us and they only apply to the specific project and site(s) discussed in this report. Experienced geotechnical personnel should observe and document the construction procedures used and the conditions encountered. Unanticipated conditions and inadequate procedures should be reported to the design team along with timely recommendations to solve the problems created.

The conclusions and recommendations presented in this report were derived in accordance with standard geotechnical engineering practices and no other warranty is expressed or implied. We look forward to serving as your geotechnical engineer and construction materials testing laboratory on the remainder of this and future projects.

Respectfully submitted,

AIMRIGHT Testing & Engineering, LLC CA No. 5794 (exp. 6/30/24) Justin J. Boyd Jr., P.E. Engineering Manager iboyd@aimrighttesting.com (918) 392-8041





### **BORING LOCATION PLAN**

**PROJECT NO.:** 13070623 **BORING NO.:** B-1 to B-6





### **BORING LOCATION PLAN**

**PROJECT NO.:** 13070623 **BORING NO.:** B-1





### **BORING LOCATION PLAN**

**PROJECT NO.:** 13070623 **BORING NO.:** B-2





### **BORING LOCATION PLAN**

**PROJECT NO.:** 13070623 **BORING NO.:** B-3





### **BORING LOCATION PLAN**

**PROJECT NO.:** 13070623 **BORING NO.:** B-4





### **BORING LOCATION PLAN**

**PROJECT NO.:** 13070623 **BORING NO.:** B-5





### **BORING LOCATION PLAN**

**PROJECT NO.:** 13070623 **BORING NO.:** B-6



| +            |              |                        | PROJECT: OMPA Waynoka Transm                                    | nission Line     |          |           |         |           |       |                |       |           |          |
|--------------|--------------|------------------------|-----------------------------------------------------------------|------------------|----------|-----------|---------|-----------|-------|----------------|-------|-----------|----------|
| A            | 1            | DICUT                  | CLIENT: CEC Corporation                                         |                  |          |           | F       | PRC       | JECI  | <b>Γ NO</b> .: | : 13( | 0706      | <br>623  |
| All          | VI           | RIGHT                  | PROJECT LOCATION: Waynoka, C                                    | Ж                |          |           |         | •••       |       |                |       |           | <u> </u> |
| TESTIN       | IG 8         | ENGINEERING            | LOCATION: see Boring Location Pla                               | an               |          |           |         | Е         | LEVA  | TION           | :     | N/A       |          |
|              | _            |                        | DRILLER: Preston S. LOGGED B                                    | Y: R. Dear       | D        | RILLING I | RIG: D- | -<br>50 / | ATV-N | /lount@        | ed    |           |          |
| LOG          | i (          | )F                     | DRILLING METHOD: Rotary Contin                                  | uous Flight Auge | ers      |           |         |           | DAT   | E:             | 7/20  | 0/23      | ,        |
| BOF          | 2IN          | IG B-1                 | DEPTH TO WATER> INITIAL: $~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~$ | 10 AT CC         | MPLE     | TION: 🐺   | N/A     | 1         | CAV   | ING>           | C     | 8.        | 5        |
|              |              |                        | I                                                               |                  |          |           | of)     |           | t     |                |       |           |          |
| iet)         | ype          |                        |                                                                 |                  | <u>ں</u> | lodn      | ld) e   | ater      | onte  | g              | j;    | jt.       | xabr     |
| n (fe        | erT          |                        | Description                                                     |                  | aphi     | Syr       | alue    | :wbi      | Ŭ     | #2(            | d Li  | c Li      | ty<br>L  |
| eptl         | du           |                        | Dooonplicit                                                     |                  | ٦<br>ق   | CS        | ź       | Jour      | sture | × %            | iquic | lasti     | stici    |
|              | ဖ            |                        |                                                                 |                  |          | no l      | SPT     | Ō         | Moi   |                | -     | Ē         | Pla      |
|              | ┝┤           |                        |                                                                 |                  | +        |           |         |           | _     |                | ┝─┤   | $\square$ |          |
| 0-           |              | TOPSOIL - 3 inches     | S                                                               |                  |          |           | 4       |           |       |                |       |           |          |
| 2-           |              | SILTY SAND             |                                                                 |                  | 25       | SM        | 5       |           | 4.2   | 27.4           | 11    | NP        | NP       |
| 3-           |              | loose, medium and      | light brown, moist                                              |                  |          |           | 10      |           |       |                |       |           |          |
| 5-           |              |                        |                                                                 |                  |          |           |         |           |       |                |       |           |          |
| 6-           |              | SILTY SAND             |                                                                 |                  |          |           | 3       |           |       |                |       |           |          |
| 8-           | $\mathbb{H}$ | very loose to loose,   | medium brown, moist to wet                                      |                  |          |           |         | C         |       |                |       |           |          |
| 9-           |              |                        |                                                                 |                  |          | SM        | 4       |           | 19.1  | 16.2           | 16    | NP        | NP       |
| 10 –<br>11 – |              |                        |                                                                 |                  |          |           |         | ŧ         |       |                |       |           |          |
| 12 –         |              |                        |                                                                 |                  |          |           |         |           |       |                |       |           |          |
| 13 –<br>14 – |              |                        |                                                                 |                  |          |           | 3       |           |       |                |       |           |          |
| 15 -         |              |                        |                                                                 |                  |          |           | Ĭ       |           |       |                |       |           |          |
| 16           |              |                        |                                                                 |                  |          |           |         |           |       |                |       |           |          |
| 17           |              |                        |                                                                 |                  |          |           |         |           |       |                |       |           |          |
| 19           |              | POORLY GRADED          | SAND                                                            | 18               | 3.5      | B         | 11      |           | 16.5  | 3.5            |       |           |          |
| 20 –<br>21 – |              | medium dense, ligh     | t brown, moist to wet                                           |                  |          |           |         |           |       |                |       |           |          |
| 22 -         |              |                        |                                                                 |                  |          |           |         |           |       |                |       |           |          |
| 23           |              |                        |                                                                 |                  |          |           | 4       |           |       |                |       |           |          |
| 24           |              | loose, light brown, r  | noist to wet                                                    |                  |          |           |         |           |       |                |       |           |          |
| 26           |              | · _                    |                                                                 |                  |          |           |         |           |       |                |       |           |          |
| 21 - 28 -    |              |                        |                                                                 | 0                |          |           |         |           |       |                |       |           |          |
| 29           |              | LEAN CLAY w/ SAI       | ND, trace shale fragments                                       | 2č               | 3.5      | CL        | 41      |           | 22.6  | 77.6           | 41    | 25        | 16       |
| 30 -<br>31 - |              | very stiff to hard, da | ark reddish brown, moist                                        |                  |          |           |         |           |       |                |       |           |          |
| 32 –         |              |                        |                                                                 |                  |          |           |         |           |       |                |       |           |          |
| 33 -         |              |                        |                                                                 |                  |          |           | 21      |           |       |                |       |           |          |
| 35 -         | H            |                        |                                                                 |                  | - V//    |           |         |           |       |                |       |           |          |
| 36           |              |                        |                                                                 |                  |          |           |         |           |       |                |       |           |          |
| 38 -         |              |                        |                                                                 |                  |          |           |         |           |       |                |       |           |          |
| 39 -         |              | LEAN CLAY w/ trac      | ce sand, shale fragments                                        |                  |          | CL        | 26      |           | 18.7  | 88.0           | 31    | 15        | 16       |
| 40 - 41 -    |              | Very stiff, mealum a   | nd dark redaisn brown mottled medium y                          | ray, moisi       |          |           |         |           |       |                |       |           |          |
| 42 -         |              |                        |                                                                 |                  |          |           |         |           |       |                |       |           |          |
| 43 - 44 -    |              | SUM E highly west      | harad                                                           | 43               | 3.5      |           | 50/5.75 |           |       |                |       |           |          |
| 45 -         |              | soft, medium and lig   | nerea<br>ght grayish brown, moist                               |                  |          |           |         |           |       |                |       |           |          |
| 46 –<br>47 – |              | -                      |                                                                 |                  |          |           |         |           |       |                |       |           |          |
| 48 -         |              |                        |                                                                 |                  |          |           |         |           |       |                |       |           |          |
|              |              | Boring terminated a    | + 12 02 ft                                                      |                  |          | 1         | 50/5.0  |           |       |                |       |           |          |
|              |              | During terminated a    | 11 40.52 n.                                                     |                  |          |           |         |           |       |                |       |           |          |
|              |              |                        |                                                                 |                  |          |           |         |           |       |                |       |           | <u> </u> |
| NP - N       | √on-⊦        | Plastic                |                                                                 |                  |          |           |         |           |       |                |       |           |          |
|              |              |                        |                                                                 |                  |          |           |         |           |       |                |       |           |          |

| <b>.</b>                                     |              |                                       | PROJECT: OMPA Waynoka Transmis              | ission Line | e        |         |             |                   |             |                  |          |              |               |                  |
|----------------------------------------------|--------------|---------------------------------------|---------------------------------------------|-------------|----------|---------|-------------|-------------------|-------------|------------------|----------|--------------|---------------|------------------|
| AGA                                          | 1            | DICUT                                 | CLIENT: CEC Corporation                     |             | -        |         |             |                   | PRC         | JECT             |          | : 13(        | 070           | 623              |
| All                                          | VI           | RIGHT                                 | PROJECT LOCATION: Waynoka, Ok               | к           |          |         |             |                   |             | •                |          | <u> </u>     |               | <u></u>          |
| TESTIN                                       | IG 8         | ENGINEERING                           | LOCATION: see Boring Location Plan          | n           |          |         |             |                   | E           | LEVA             | TION     | :            | N/A           | ·                |
|                                              |              |                                       | DRILLER: Preston S. LOGGED BY               | : R. Dea    | ır       | DF      |             | RIG: D            | -50 /       | ATV-N            | /lount@  | ed           |               |                  |
| LUG                                          | i C          |                                       | DRILLING METHOD: Rotary Continue            | ious Fligh  | t Augers |         |             |                   |             | DAT              | E:       | 7/2          | 0/23          | 3                |
| BOR                                          | <u> </u>     | IG <u>B-2</u>                         | DEPTH TO WATER> INITIAL: $~~$               | 18          |          | PLET    | ion: ቛ      | 14                |             | CAV              | ING>     | <u>_C</u> _  | _14           | .5               |
| Depth (feet)                                 | Sampler Type |                                       | Description                                 |             |          | Graphic | USCS Symbol | SPT N-value (bpf) | Groundwater | Moisture Content | % < #200 | Liquid Limit | Plastic Limit | Plasticity Index |
| 0<br>1<br>2                                  |              | TOPSOIL - 3 inches                    | s                                           | (FII I_)    | 0.25     |         | SP-SM       | 9<br>13           |             | 5.5              | 4.9      | 14           | NP            | NP               |
| 3 -<br>4 -<br>5 -<br>6 -                     |              | loose to medium de                    | inse, medium and light grayish brown, mois  | ist         |          |         |             | 11                |             |                  |          |              |               |                  |
| 7 -<br>8 -<br>9 -                            |              | SILTY SAND                            |                                             |             | 8.5-     |         | SM          | 12                |             | 5.5              | 14.8     | 12           | NP            | NP               |
| 10 -<br>11 -<br>12 -<br>13 -                 |              | medium dense, me                      | dium reddish brown, moist                   |             |          |         |             | 7                 |             |                  |          |              |               |                  |
| 14<br>15<br>16<br>17                         |              | CLAYEY SAND<br>loose, dark and me     | dium brown, moist to very moist             |             |          |         |             | r                 |             |                  |          |              |               |                  |
| 18 -<br>19 -<br>20 -<br>21 -<br>22 -         |              | POORLY GRADED<br>very loose to mediu  | SAND<br>Im dense, light brown, moist to wet |             |          |         |             | 3                 | ¥           | 18.6             | 1.6      |              |               |                  |
| 23 -<br>24 -<br>25 -<br>26 -                 |              |                                       |                                             |             |          |         |             | 11                |             |                  |          |              |               |                  |
| 27 -<br>28 -<br>29 -<br>30 -<br>31 -         |              |                                       |                                             |             |          |         |             | 12                |             | 16.5             | 0.5      |              |               |                  |
| 32 -<br>33 -<br>34 -<br>35 -<br>36 -         |              |                                       |                                             |             |          |         |             | 4                 |             |                  |          |              |               |                  |
| 37 -<br>38 -<br>39 -<br>40 -<br>41 -<br>42 - |              | POORLY GRADED<br>medium dense, ligh   | ) SAND w/ SILT<br>It reddish brown, moist   |             |          |         |             | 21                |             | 14.3             | 8.0      |              |               |                  |
| 42<br>43<br>44<br>45<br>46<br>47             |              | POORLY GRADED<br>loose, light reddish | SAND<br>brown, very moist to wet            |             | 43.5-    |         |             | 7                 |             |                  |          |              |               |                  |
| 48 -<br>49 -                                 |              | Poring terminated a                   |                                             |             |          |         |             | 7                 |             |                  |          |              |               |                  |
| NP - N                                       | ↓on-F        | Plastic                               |                                             |             |          |         |             |                   |             |                  |          |              |               |                  |

This information pertains only to this boring and should not be interpreted as being indicitive of the site.

| A                                                                                                                  | M            | RIGHT                                                                                                 | PROJECT: OMPA Waynoka Transm<br>CLIENT: CEC Corporation<br>PROJECT LOCATION: Waynoka, C   | hission Line      |         |             | I                       | PRC         | JECT                | ' NO.:       | 130          | 0706          | <br>523          |
|--------------------------------------------------------------------------------------------------------------------|--------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|-------------------|---------|-------------|-------------------------|-------------|---------------------|--------------|--------------|---------------|------------------|
| TESTIN                                                                                                             | IG 8         | ENGINEERING                                                                                           | LOCATION: see Boring Location Pla                                                         | an                |         |             |                         | _ E         | LEVA                | TION         | -            | N/A           |                  |
| LOG                                                                                                                | i C          | )F                                                                                                    | DRILLER: Preston S. LOGGED B                                                              | Y: <u>R. Dear</u> | _ DF    | RILLING F   | RIG: <u>D</u> -         | -50 /       | ۸-۷-۸<br><b>דמח</b> | lounte<br>F· | ed<br>7/20   | 1/23          | _                |
| BOR                                                                                                                | RIN          | IG B-3                                                                                                | DEPTH TO WATER> INITIAL: ♀                                                                | <u>13</u> AT COM  | PLET    | ion: ቛ      | 12                      |             | CAV                 | ING>         | <u>C</u>     | 1             | 4                |
| Depth (feet)                                                                                                       | Sampler Type |                                                                                                       | Description                                                                               |                   | Graphic | USCS Symbol | SPT N-value (bpf)       | Groundwater | Moisture Content    | % <#200      | Liquid Limit | Plastic Limit | Plasticity Index |
| 0 - 1 - 1 - 2 - 1 - 2 - 3 - 1 - 2 - 3 - 4 - 1 - 5 - 1 - 1 - 5 - 1 - 1 - 5 - 1 - 1                                  |              | TOPSOIL - 2 inches<br>SILTY CLAYEY SA<br>loose, dark reddish<br>SILTY SAND<br>medium dense, ligh      | s<br>ND (FILL)<br>brown, moist<br>it reddish brown, moist                                 | 0.167             |         | SC-SM<br>SM | 7<br>9<br>5<br>18<br>21 |             | 10.9                | 42.4         | 17           | 11<br>NP      | 6<br>NP          |
| 12 - 1<br>13 - 1<br>14 - 1<br>15 - 1<br>16 - 1<br>17 - 1<br>18 - 1<br>19 - 1<br>20 - 1<br>21 - 1<br>22 - 1<br>22 - |              | SILTY SAND<br>medium dense, me                                                                        | dium reddish brown, moist to very moist                                                   |                   |         | SM          | 18<br>15                |             | 12.2                | 14.8         | 12           | NP            | NP               |
| 23 -<br>24 -<br>25 -<br>26 -<br>27 -<br>28 -<br>29 -                                                               |              | POORLY GRADED<br>medium dense, med<br>SANDY LEAN CLA<br>stiff, dark reddish br<br>Boring terminated a | 9 SAND w/ SILT<br>dium reddish brown, moist<br>Y<br>rown, moist to very moist<br>t 30 ft. | 23.5              |         | SP-SM       | 19                      |             | 11.6                | 9.6          | 9            | NP            | NP               |
| NP - N                                                                                                             | lon-F        | Plastic                                                                                               |                                                                                           |                   |         |             |                         |             |                     |              |              |               |                  |

|                              |             |                                         | PROJECT: OMPA Waynoka Transn                                       | nission Line       |                         |           |              |            |             |          |             |              |              |
|------------------------------|-------------|-----------------------------------------|--------------------------------------------------------------------|--------------------|-------------------------|-----------|--------------|------------|-------------|----------|-------------|--------------|--------------|
| AGA                          |             | DICUT                                   | CLIENT: CEC Corporation                                            |                    |                         |           | F            | PRO        |             | - NO -   | 130         | 706          | 523          |
| AT                           | VI          | RIGHT                                   | PROJECT LOCATION: Waynoka (                                        | )K                 |                         |           | '            | ŇŬ         |             | 10       | 100         | 57.00        | 20           |
| TESTIN                       | IG 8        | ENGINEERING                             | LOCATION: see Boring Location Pla                                  | an                 |                         |           |              | E          | LEVA        | TION     |             | N/A          | —            |
|                              | _           | _                                       | DRILLER: Preston S. LOGGED B                                       | Y: R. Dear         | DF                      | RILLING F | RIG: D-      | -<br>50 /  | ΑΤΥ-Ν       | lounte   | ed          | -            | _            |
| LOG                          | i C         | )F                                      | DRILLING METHOD: Rotary Contin                                     | uous Flight Augers |                         |           |              |            | DAT         | E:       | 7/20        | )/23         |              |
| BOR                          | RIN         | IG B-4                                  | DEPTH TO WATER> INITIAL: 😤 _                                       | Dry AT COM         | PLE1                    | TION: 🐺   | Dry          | /          | CAV         | ING>     | C           | No           | ne           |
|                              |             | <u> </u>                                |                                                                    |                    |                         |           | of)          |            | ut          |          |             |              |              |
| epth (feet)                  | Impler Type |                                         | Description                                                        |                    | Graphic                 | SCS Symbo | N-value (b   | roundwater | sture Conte | % < #200 | iquid Limit | lastic Limit | sticity Inde |
|                              | й           |                                         |                                                                    |                    |                         | ň         | SPT          | G          | Moi         |          |             | а.           | Pla          |
| 0-<br>1-                     |             | √TOPSOIL - 5 inches                     | S                                                                  | 0.41/2             | ////                    |           | 15           |            |             |          |             |              |              |
| 2                            |             | LEAN CLAY w/ SAI                        | ND, trace limestone fragments                                      | 0.417              |                         | CL        | 24           |            | 8.2         | 71.7     | 32          | 14           | 18           |
| 3-<br>4-                     |             | very stiff, dark redd                   | ish grayish brown, moist                                           |                    | $\mathbb{V}/\mathbb{V}$ |           | 27           |            |             |          |             |              |              |
| 5  <br>6  <br>7              |             | LEAN CLAY w/ trac<br>hard, medium to da | e sand, sandstone, shale fragments rk reddish grayish brown, moist |                    |                         | CL        | 39           |            | 21.0        | 86.1     | 47          | 23           | 24           |
| 8 -<br>9 -<br>10 -<br>11 -   |             |                                         |                                                                    |                    |                         |           | 44           |            |             |          |             |              |              |
| 12 -<br>13 -<br>14 -         |             | SHALE bigbly weat                       | hered                                                              |                    |                         |           | 44           |            |             |          |             |              |              |
| 15 –<br>16 –<br>17 –         |             | soft, dark and medi                     | um reddish brown, moist                                            |                    |                         |           | 50/4.75      |            |             |          |             |              |              |
| 18 -<br>19 -<br>20 -<br>21 - |             |                                         |                                                                    |                    |                         |           | 38<br>50/5.0 |            |             |          |             |              |              |
| 22 -<br>23 -<br>24 -         |             |                                         |                                                                    |                    |                         |           | 50/5.0       |            |             |          |             |              |              |
| 25 -<br>26 -<br>27 -         |             |                                         |                                                                    |                    |                         |           |              |            |             |          |             |              |              |
| 28 –                         |             | Boring terminated a                     | ıt 28.88 ft.                                                       |                    |                         |           | 50/4.5       |            |             |          |             |              |              |
|                              |             |                                         |                                                                    |                    |                         |           |              |            |             |          |             |              |              |
|                              |             |                                         |                                                                    |                    |                         |           |              |            |             |          |             |              |              |
|                              |             |                                         |                                                                    |                    |                         |           |              |            |             |          |             |              |              |
|                              |             |                                         |                                                                    |                    |                         |           |              |            |             |          |             |              |              |
|                              |             |                                         |                                                                    |                    |                         |           |              |            |             |          |             |              |              |
|                              |             |                                         |                                                                    |                    |                         |           |              |            |             |          |             |              |              |
| NP - N                       | lon-f       | Plastic                                 |                                                                    |                    | 1                       |           |              |            |             |          |             |              |              |

| +            |              | and the second second  | <b>PROJECT:</b> OMPA Waynoka Transmission L                        | ine        |         |             |                 |             |                 |          |              |               |                  |
|--------------|--------------|------------------------|--------------------------------------------------------------------|------------|---------|-------------|-----------------|-------------|-----------------|----------|--------------|---------------|------------------|
| AGA          |              | DICUT                  | CLIENT: CEC Corporation                                            |            |         |             | F               | PRC         | JECT            |          | 130          | 706           | 523              |
| AT           | VI           | KIGHT                  | PROJECT LOCATION: Waynoka OK                                       |            |         |             | '               | i c         |                 | 10       | 100          | 57.00         | 20               |
| TESTIN       | IG 8         | ENGINEERING            | LOCATION: see Boring Location Plan                                 |            |         |             |                 | E           | LEVA            | TION     |              | N/A           | _                |
|              | _            | _                      | DRILLER: Preston S. LOGGED BY: R.D.                                | ear        | DF      |             | RIG: D-         | - <b>-</b>  | ATV-N           | lounte   | <br>əd       |               | _                |
| LOG          | i C          | )F                     | DRILLING METHOD: Rotary Continuous Flin                            | nht Augers |         |             | <u> </u>        |             | DAT             | F:       | 7/2(         | ٦/23          | _                |
| BOR          | 2 I N        | IG B-5                 | DEPTH TO WATER> INITIAL: ¥ Dry                                     | AT COM     | PLET    | TION: 🐺     | Dry             | ,           | CAV             | ING>     | <u> </u>     | No            | ne               |
|              |              |                        |                                                                    |            | -       |             | <del></del>     |             | -<br>           |          |              | <u> </u>      |                  |
| Depth (feet) | Sampler Type |                        | Description                                                        |            | Graphic | USCS Symbol | SPT N-value (bp | Groundwater | Moisture Conter | % < #200 | Liquid Limit | Plastic Limit | Plasticity Index |
| 0 -          |              |                        |                                                                    |            |         |             | T               |             |                 |          |              |               |                  |
| 1-           |              | TOPSOIL - 6 Inches     | S                                                                  | 0.5        |         |             | 10              |             | o               | 00 G     | 44           | 22            | 10               |
| 2-           |              | LEAN CLAY w/ trac      | ce sand, sandstone fragments                                       |            |         | UL          | 41              |             | 21.0            | 92.0     | 41           | 22            | 19               |
| 4 -          |              | Sun to hard, dark gr   | ayish to dark reduish grayish brown, moist                         |            |         |             | 35              |             |                 |          |              |               |                  |
| 5-           |              |                        |                                                                    |            |         |             |                 |             | 47.0            | 4        |              | 4.0           | 10               |
| 7 -          |              | LEAN CLAY w/ SAI       | ND, shale fragments<br>lark to medium gravish reddish brown, moist |            |         | CL          | 11              |             | 17.8            | 75.1     | 37           | 19            | 18               |
| 8-<br>9-     |              |                        |                                                                    |            |         |             | 64              |             |                 |          |              |               |                  |
| 10 -         |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
| 11 –<br>12 – |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
| 13 -         |              |                        |                                                                    |            |         |             | 74              |             |                 |          |              |               |                  |
| 14 –<br>15 – |              |                        |                                                                    |            |         |             | /4              |             |                 |          |              |               |                  |
| 16           |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
| 17 –<br>18 – |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
| 19           |              | SHALE highly weat      | hered                                                              |            |         |             | 36              |             |                 |          |              |               |                  |
| 20 –<br>21 – |              | soft, light grayish to | dark reddish brown, moist                                          |            |         |             | 50/4.5          |             |                 |          |              |               |                  |
| 22 -         |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
| 23 –<br>24 – |              |                        |                                                                    |            |         |             | 38              |             |                 |          |              |               |                  |
| 25 -         |              |                        |                                                                    |            |         |             | 50/4.75         |             |                 |          |              |               |                  |
| 26 –<br>27 – |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
| 28 -         |              |                        |                                                                    |            |         |             | 45              |             |                 |          |              |               |                  |
| 29 –         |              |                        |                                                                    |            |         |             | 45<br>50/3.0    |             |                 |          |              |               |                  |
|              |              | Boring terminated a    | ıt 29.75 ft.                                                       |            |         |             |                 |             |                 |          |              |               |                  |
|              |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
|              |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
|              |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
|              |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
|              |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
|              |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
|              |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
|              |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
|              |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
|              |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
|              |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
|              |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
|              |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
|              |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
| NP - N       | lon-l        | Plastic                |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |
|              |              |                        |                                                                    |            |         |             |                 |             |                 |          |              |               |                  |

| <b>•</b>     |          |                       | PROJECT: OMPA Waynoka Transn            | nission Line       |                   |           |         |          |       |                  |          |          |                                              |
|--------------|----------|-----------------------|-----------------------------------------|--------------------|-------------------|-----------|---------|----------|-------|------------------|----------|----------|----------------------------------------------|
| A            | 1        | DICUT                 | CI IFNT: CEC Corporation                |                    |                   |           | F       | PRC      | JECT  | <b>NO.</b> :     | • 13(    | 070      | 623                                          |
| AII          | VI       | RIGHT                 | PROJECT LOCATION: Waynoka, C            | Ж                  |                   |           |         | •••      |       | ••••             |          |          | <u> </u>                                     |
| TESTIN       | IG &     | ENGINEERING           | LOCATION: see Boring Location Pla       | an                 |                   |           |         | Е        | LEVA  | TION             | :        | N/A      | <u>,                                    </u> |
| . ~~         | -        | - <b></b>             | DRILLER: Preston S. LOGGED B            | Y: R. Dear         | DF                | RILLING P | RIG: D- | 50_/     | ATV-N | /Joun <u>t</u> e | ed _     | ·        |                                              |
| LOG          | i C      | )F                    | DRILLING METHOD: Rotary Contin          | uous Flight Augers | ;                 |           |         | <u> </u> | DAT   | E:               | 7/20     | 0/23     | 3                                            |
| BOF          | 211      | IG B-6                | DEPTH TO WATER> INITIAL: 😤 _            | Dry AT COM         | IPLET             | FION: 🐺   | Dry     | /        | CAV   | ING>             | C        | No       | ne                                           |
|              |          |                       |                                         |                    | Τ                 |           | pf)     |          | IJ    |                  |          |          | Ū                                            |
| ∍et)         | ype      |                       |                                         |                    | <u>ں</u>          | oqu       | lq) e   | ater     | onte  | g                | Jit      | ait<br>D | Jdey                                         |
| n (fe        | ler T    |                       | Description                             |                    | aphi              | Syr       | /aluc   | мр       | ŭ     | #2(              | dLir     | с Гі     | 노                                            |
| epti         | du       |                       | Docompact                               |                    | Ğ                 | Scs       | ź       | rour     | sture | × %              | .iqui    | lasti    | stici                                        |
|              | လိ       |                       |                                         |                    |                   | n n       | SPT     | Ū        | Moi   |                  | -        | ₽        | Pla                                          |
|              | $\vdash$ |                       |                                         |                    |                   |           |         |          |       |                  | $\vdash$ | $\vdash$ | $\vdash$                                     |
| 0-           |          | TOPSOIL - 4 inches    | S                                       | 0.004              |                   |           | 6       |          |       |                  |          |          |                                              |
| 2            |          | LEAN CLAY w/ SAI      | ND, trace sandstone fragments           |                    | <sup>3</sup> {/// |           | 8       |          |       |                  |          |          |                                              |
| 3-           |          | medium stiff to very  | stiff, dark to medium reddish brown, mo | st                 |                   | CI        | 13      |          | 12.3  | 82.6             | 38       | 16       | 22                                           |
| 5 -<br>5 -   |          |                       |                                         |                    | V///              |           |         |          | 12.0  | 02.0             |          |          |                                              |
| 6-           |          | LEAN CLAY w/ SAI      | ND. sandstone fragments                 |                    | -\///             |           | 52      |          |       |                  |          |          |                                              |
| / _<br>8 _   | $\vdash$ | hard, medium and I    | ight grayish reddish brown, moist       |                    | V///              |           |         |          |       |                  |          |          |                                              |
| 9-           |          | SANDSTONE sean        | n                                       | 8.5                | 5                 |           | 50/1.25 |          |       |                  |          |          |                                              |
| 10 –<br>11 – |          |                       |                                         | 1{                 |                   |           |         |          |       |                  |          |          |                                              |
| 12           |          | LEAN CLAY w/ SAI      | ND, trace shale fragments               |                    |                   |           |         |          |       |                  |          |          |                                              |
| 13 <u>-</u>  |          | very stiff, medium g  | jray, moist                             |                    |                   |           | 15      |          |       |                  |          |          |                                              |
| 14 -         |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          |                                              |
| 16 -         |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          |                                              |
| 17 –<br>18 – |          |                       |                                         |                    | V///              |           |         |          |       |                  |          |          |                                              |
| 19           |          | LEAN CLAY w/ SAI      | ND, shale fragments                     |                    | ¥///              |           | 40      |          |       |                  |          |          |                                              |
| 20 -<br>21 - |          | hard, dark reddish g  | grayish brown, moist                    |                    | <i>\///</i>       |           |         |          |       |                  |          |          |                                              |
| 22 -         |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          | 1                                            |
| 23 -         |          |                       |                                         | 23.5               | 54                |           | 37      |          |       |                  |          |          |                                              |
| 24 -<br>25 - |          | SHALE highly weat     | hered                                   |                    |                   |           | 50/3.75 |          |       |                  |          |          |                                              |
| 26           |          | SUIL, UAIN ICUUISII S | Town motied light gray, moist           |                    |                   |           |         |          |       |                  |          |          |                                              |
| 27 -<br>28 - |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          |                                              |
| 29 _         |          |                       |                                         |                    |                   |           | 50/3.0  |          |       |                  |          |          |                                              |
|              |          | Boring terminated a   | at 29.25 ft.                            |                    |                   |           |         |          |       |                  |          |          |                                              |
|              |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          |                                              |
|              |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          |                                              |
|              |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          |                                              |
|              |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          |                                              |
|              |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          | 1                                            |
|              |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          | 1                                            |
|              |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          | 1                                            |
|              |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          | 1                                            |
|              |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          | 1                                            |
|              |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          | 1                                            |
|              |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          |                                              |
|              |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          | 1                                            |
|              |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          | 1                                            |
|              |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          |                                              |
| ļ]           |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          |                                              |
| NP - N       | lon-F    | Plastic               |                                         |                    |                   |           |         |          |       |                  |          |          |                                              |
|              |          |                       |                                         |                    |                   |           |         |          |       |                  |          |          |                                              |

### **KEY TO SYMBOLS**

Symbol Description

#### Strata Symbols



Topsoil



Silty Sand



Poorly Graded Sand



Low Plasticity Clay



Shale

Fill



Clayey Sand



Poorly Graded Sand with Silt



Sandstone

#### Misc. Symbols



- <u>C</u> Depth to Caving
- Water Table at Boring Completion

#### Soil Samplers



|                           |                                      |                                           | Friction<br>Angle<br>Φ                                       | L-F<br>Horiz<br>Subgrade                                           | Pile<br>contal<br>e Modulus                                        |                                                           |                                                      |                                                                          |                                                                          |
|---------------------------|--------------------------------------|-------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Depth<br>Interval<br>(ft) | L-Pile<br>Layer<br>Type <sup>1</sup> | Unit<br>Weight<br>Y <sup>1</sup><br>(pcf) | ()<br>or<br>Undrained<br>Cohesion<br>c <sub>u</sub><br>(psf) | k <sub>dry(sand)</sub><br>or<br>k <sub>static(clay)</sub><br>(pci) | k <sub>sat(sand)</sub><br>or<br>k <sub>cyclic(clay)</sub><br>(pci) | MFAD<br>Deformation<br>Modulus<br>E <sub>D</sub><br>(ksi) | Strain<br>Factor<br>ε <sub>50</sub> /k <sub>rm</sub> | Allowable<br>End Bearing<br>Capacity <sup>2</sup><br>(FS ≥ 2.5)<br>(ksf) | Allowable<br>Unit Side<br>Resistance <sup>3</sup><br>(FS = 2.5)<br>(ksf) |
| 0 to 18.5*                | Sand                                 | 95                                        | 27°                                                          | 25                                                                 | 20                                                                 | 0.2                                                       | N/A                                                  | N/A                                                                      | 0.13                                                                     |
| 18.5 to 28.5              | Sand                                 | 90                                        | 29°                                                          | 25                                                                 | 20                                                                 | 0.3                                                       | N/A                                                  | 1.4                                                                      | 0.10                                                                     |
| 28.5 to 43.5              | Stiff Clay                           | 120                                       | 2,000                                                        | 1,000                                                              | 400                                                                | 1.5                                                       | 0.005                                                | 6.0                                                                      | 0.44                                                                     |
| 43.5 to 50                | Weak Rock <sup>4</sup>               | 130                                       | 30°                                                          | N/A                                                                | N/A                                                                | 500                                                       | 0.0005                                               | 15.0                                                                     | 1.00                                                                     |

- 1. Interpretation of groundwater table should be approximated within the water level encountered during drilling and/or at the completion of drilling at this site. The depth interval where water was encountered during drilling within the applicable layer is indicated in the table with an asterisk (\*) and effective unit weights should be determined, where applicable. As such, L-Pile layer types of Clay "with" and "without" free water shall be used accordingly.
- 2. The recommended net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the pier base elevation.
- 3. Where provided, the unit side resistance between the pier and surrounding bearing material can be used to develop pier capacity in compression and uplift resistance. The pier weight and maximum allowable unit side resistance may be utilized to resist structural upward loadings. At minimum, the upper 5 feet of pier and one (1) pier diameter above the pier base should be ignored for unit side resistance in piers bearing in the clay soils stratum.
- 4. For weak rock, the following shall be utilized: Initial Modulus of Rock Mass = 7.5 to 35 ksi; Rock Quality Designation (RQD) = 10 to 60%; Uniaxial Compressive Strength = 100 to 500 psi; MFAD Rock Cohesion = 2 ksf; MFAD Rock/Concrete Bond Strength = 13 ksf.
- 5. Auger refusal was encountered, please review boring logs carefully. Auger refusal is defined as material that could not be penetrated with the drill rig equipment used on the project. Auger refusal material may be caused by large boulders, rock ledges, lenses, seams, or the top of parent bedrock. The drilling rig should be equipped with an earth and rock augers and other necessary tools to excavate, clean and level rock bottoms properly, and without construction delay. The contractor should assess the subsurface conditions prior to mobilizing and should be prepared to utilize other techniques such as rock coring to reach planned pier bottom depths.
- 6. Where minimum cyclic lateral pressures are anticipated, soil expansion uplift pressures of up to 0.25 to 0.5 ksf may develop and should be included in design for portion of pier extending through moderately to highly expansive soils within the upper 5 feet.

**PROJECT NO.:** 13070623 **BORING NO.:** B-1



|                           |                          |                                           | Friction<br>Angle<br>Φ                                                     | L-I<br>Horiz<br>Subgrade                                           | Pile<br>contal<br>e Modulus                                        |                                                           |                                                      |                                                                          |                                                                          |
|---------------------------|--------------------------|-------------------------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Depth<br>Interval<br>(ft) | L-Pile<br>Layer<br>Type¹ | Unit<br>Weight<br>Y <sup>1</sup><br>(pcf) | ( <sup>°</sup> )<br>or<br>Undrained<br>Cohesion<br>c <sub>u</sub><br>(psf) | k <sub>dry(sand)</sub><br>or<br>k <sub>static(clay)</sub><br>(pci) | k <sub>sat(sand)</sub><br>or<br>k <sub>cyclic(clay)</sub><br>(pci) | MFAD<br>Deformation<br>Modulus<br>E <sub>D</sub><br>(ksi) | Strain<br>Factor<br>ε <sub>50</sub> /k <sub>rm</sub> | Allowable<br>End Bearing<br>Capacity <sup>2</sup><br>(FS ≥ 2.5)<br>(ksf) | Allowable<br>Unit Side<br>Resistance <sup>3</sup><br>(FS = 2.5)<br>(ksf) |
| 0 to 8.5                  | Sand                     | 100                                       | 30°                                                                        | 25                                                                 | 20                                                                 | 0.4                                                       | N/A                                                  | N/A                                                                      | 0.20                                                                     |
| 8.5 to 13.5               | Sand                     | 105                                       | 32°                                                                        | 90                                                                 | 60                                                                 | 0.6                                                       | N/A                                                  | N/A                                                                      | 0.37                                                                     |
| 13.5 to 23.5*             | Sand                     | 90                                        | 26°                                                                        | 25                                                                 | 20                                                                 | 0.2                                                       | N/A                                                  | 0.9                                                                      | 0.15                                                                     |
| 23.5 to 30                | Sand                     | 105                                       | 32°                                                                        | 90                                                                 | 60                                                                 | 0.5                                                       | N/A                                                  | 2.6                                                                      | 0.42                                                                     |
| 30 to 38.5                | Sand                     | 90                                        | 26°                                                                        | 25                                                                 | 20                                                                 | 0.2                                                       | N/A                                                  | 0.9                                                                      | 0.20                                                                     |
| 38.5 to 50*               | Sand                     | 100                                       | 29°                                                                        | 25                                                                 | 20                                                                 | 0.3                                                       | N/A                                                  | 1.6                                                                      | 0.26                                                                     |

1. Interpretation of groundwater table should be approximated within the water level encountered during drilling and/or at the completion of drilling at this site. The depth interval where water was encountered during drilling within the applicable layer is indicated in the table with an asterisk (\*) and effective unit weights should be determined, where applicable. As such, L-Pile layer types of Clay "with" and "without" free water shall be used accordingly.

2. The recommended net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the pier base elevation.

3. Where provided, the unit side resistance between the pier and surrounding bearing material can be used to develop pier capacity in compression and uplift resistance. The pier weight and maximum allowable unit side resistance may be utilized to resist structural upward loadings. At minimum, the upper 5 feet of pier and one (1) pier diameter above the pier base should be ignored for unit side resistance in piers bearing in the clay soils stratum.

- 4. For weak rock, the following shall be utilized: Initial Modulus of Rock Mass = 7.5 to 35 ksi; Rock Quality Designation (RQD) = 10 to 60%; Uniaxial Compressive Strength = 100 to 500 psi; MFAD Rock Cohesion = 2 ksf; MFAD Rock/Concrete Bond Strength = 13 ksf.
- 5. Auger refusal was encountered, please review boring logs carefully. Auger refusal is defined as material that could not be penetrated with the drill rig equipment used on the project. Auger refusal material may be caused by large boulders, rock ledges, lenses, seams, or the top of parent bedrock. The drilling rig should be equipped with an earth and rock augers and other necessary tools to excavate, clean and level rock bottoms properly, and without construction delay. The contractor should assess the subsurface conditions prior to mobilizing and should be prepared to utilize other techniques such as rock coring to reach planned pier bottom depths.
- 6. Where minimum cyclic lateral pressures are anticipated, soil expansion uplift pressures of up to 0.25 to 0.5 ksf may develop and should be included in design for portion of pier extending through moderately to highly expansive soils within the upper 5 feet.

# DRILLED PIER DESIGN PARAMETERS

**PROJECT NO.:** 13070623 **BORING NO.:** B-2



|                           |                                      |                                           | Friction<br>Angle<br>Φ                                       | L-I<br>Horiz<br>Subgrade                                           | Pile<br>contal<br>e Modulus                                        |                                                           |                                                      |                                                                          |                                                                          |
|---------------------------|--------------------------------------|-------------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Depth<br>Interval<br>(ft) | L-Pile<br>Layer<br>Type <sup>1</sup> | Unit<br>Weight<br>γ <sup>1</sup><br>(pcf) | ()<br>or<br>Undrained<br>Cohesion<br>c <sub>u</sub><br>(psf) | k <sub>dry(sand)</sub><br>or<br>k <sub>static(clay)</sub><br>(pci) | k <sub>sat(sand)</sub><br>or<br>k <sub>cyclic(clay)</sub><br>(pci) | MFAD<br>Deformation<br>Modulus<br>E <sub>D</sub><br>(ksi) | Strain<br>Factor<br>ε <sub>50</sub> /k <sub>rm</sub> | Allowable<br>End Bearing<br>Capacity <sup>2</sup><br>(FS ≥ 2.5)<br>(ksf) | Allowable<br>Unit Side<br>Resistance <sup>3</sup><br>(FS = 2.5)<br>(ksf) |
| 0 to 6                    | Sand                                 | 90                                        | 28°                                                          | 25                                                                 | 20                                                                 | 0.3                                                       | N/A                                                  | N/A                                                                      | 0.12                                                                     |
| 6 to 23.5*                | Sand                                 | 110                                       | 35°                                                          | 90                                                                 | 60                                                                 | 0.9                                                       | N/A                                                  | 4.0                                                                      | 0.45                                                                     |
| 23.5 to 28.5              | Sand                                 | 105                                       | 35°                                                          | 90                                                                 | 60                                                                 | 1.0                                                       | N/A                                                  | 4.0                                                                      | 0.61                                                                     |
| 28.5 to 30*               | Stiff Clay                           | 120                                       | 1,500                                                        | 500                                                                | 200                                                                | 0.8                                                       | 0.007                                                | 3.0                                                                      | 0.33                                                                     |

- 1. Interpretation of groundwater table should be approximated within the water level encountered during drilling and/or at the completion of drilling at this site. The depth interval where water was encountered during drilling within the applicable layer is indicated in the table with an asterisk (\*) and effective unit weights should be determined, where applicable. As such, L-Pile layer types of Clay "with" and "without" free water shall be used accordingly.
- 2. The recommended net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the pier base elevation.
- 3. Where provided, the unit side resistance between the pier and surrounding bearing material can be used to develop pier capacity in compression and uplift resistance. The pier weight and maximum allowable unit side resistance may be utilized to resist structural upward loadings. At minimum, the upper 5 feet of pier and one (1) pier diameter above the pier base should be ignored for unit side resistance in piers bearing in the clay soils stratum.
- 4. For weak rock, the following shall be utilized: Initial Modulus of Rock Mass = 7.5 to 35 ksi; Rock Quality Designation (RQD) = 10 to 60%; Uniaxial Compressive Strength = 100 to 500 psi; MFAD Rock Cohesion = 2 ksf; MFAD Rock/Concrete Bond Strength = 13 ksf.
- 5. Auger refusal was encountered, please review boring logs carefully. Auger refusal is defined as material that could not be penetrated with the drill rig equipment used on the project. Auger refusal material may be caused by large boulders, rock ledges, lenses, seams, or the top of parent bedrock. The drilling rig should be equipped with an earth and rock augers and other necessary tools to excavate, clean and level rock bottoms properly, and without construction delay. The contractor should assess the subsurface conditions prior to mobilizing and should be prepared to utilize other techniques such as rock coring to reach planned pier bottom depths.
- 6. Where minimum cyclic lateral pressures are anticipated, soil expansion uplift pressures of up to 0.25 to 0.5 ksf may develop and should be included in design for portion of pier extending through moderately to highly expansive soils within the upper 5 feet.

**PROJECT NO.:** 13070623 **BORING NO.:** B-3



|                           |                          |                                           | Friction<br>Angle<br>Φ                                        | L-I<br>Horiz<br>Subgrade                                           | Pile<br>contal<br>e Modulus                                        |                                                           |                                                      |                                                                          |                                                                          |
|---------------------------|--------------------------|-------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Depth<br>Interval<br>(ft) | L-Pile<br>Layer<br>Type¹ | Unit<br>Weight<br>Y <sup>1</sup><br>(pcf) | ( )<br>or<br>Undrained<br>Cohesion<br>c <sub>u</sub><br>(psf) | k <sub>dry(sand)</sub><br>or<br>k <sub>static(clay)</sub><br>(pci) | k <sub>sat(sand)</sub><br>or<br>k <sub>cyclic(clay)</sub><br>(pci) | MFAD<br>Deformation<br>Modulus<br>E <sub>D</sub><br>(ksi) | Strain<br>Factor<br>ε <sub>50</sub> /k <sub>rm</sub> | Allowable<br>End Bearing<br>Capacity <sup>2</sup><br>(FS ≥ 2.5)<br>(ksf) | Allowable<br>Unit Side<br>Resistance <sup>3</sup><br>(FS = 2.5)<br>(ksf) |
| 0 to 6                    | Stiff Clay               | 115                                       | 2,000                                                         | 500                                                                | 200                                                                | 1.5                                                       | 0.007                                                | N/A                                                                      | N/A                                                                      |
| 6 to 13.5                 | Stiff Clay               | 120                                       | 2,500                                                         | 1,000                                                              | 400                                                                | 2.5                                                       | 0.005                                                | 6.0                                                                      | 0.55                                                                     |
| 13.5 to 30                | Weak Rock <sup>4</sup>   | 130                                       | 30°                                                           | N/A                                                                | N/A                                                                | 500                                                       | 0.0005                                               | 15.0                                                                     | 1.00                                                                     |

- 1. Interpretation of groundwater table should be approximated within the water level encountered during drilling and/or at the completion of drilling at this site. The depth interval where water was encountered during drilling within the applicable layer is indicated in the table with an asterisk (\*) and effective unit weights should be determined, where applicable. As such, L-Pile layer types of Clay "with" and "without" free water shall be used accordingly.
- 2. The recommended net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the pier base elevation.
- 3. Where provided, the unit side resistance between the pier and surrounding bearing material can be used to develop pier capacity in compression and uplift resistance. The pier weight and maximum allowable unit side resistance may be utilized to resist structural upward loadings. At minimum, the upper 5 feet of pier and one (1) pier diameter above the pier base should be ignored for unit side resistance in piers bearing in the clay soils stratum.
- 4. For weak rock, the following shall be utilized: Initial Modulus of Rock Mass = 7.5 to 35 ksi; Rock Quality Designation (RQD) = 10 to 60%; Uniaxial Compressive Strength = 100 to 500 psi; MFAD Rock Cohesion = 2 ksf; MFAD Rock/Concrete Bond Strength = 13 ksf.
- 5. Auger refusal was encountered, please review boring logs carefully. Auger refusal is defined as material that could not be penetrated with the drill rig equipment used on the project. Auger refusal material may be caused by large boulders, rock ledges, lenses, seams, or the top of parent bedrock. The drilling rig should be equipped with an earth and rock augers and other necessary tools to excavate, clean and level rock bottoms properly, and without construction delay. The contractor should assess the subsurface conditions prior to mobilizing and should be prepared to utilize other techniques such as rock coring to reach planned pier bottom depths.
- 6. Where minimum cyclic lateral pressures are anticipated, soil expansion uplift pressures of up to 0.25 to 0.5 ksf may develop and should be included in design for portion of pier extending through moderately to highly expansive soils within the upper 5 feet.

**PROJECT NO.:** 13070623 **BORING NO.:** B-4



|                           |                          |                                           | Friction<br>Angle<br>Φ                                        | L-F<br>Horiz<br>Subgrade                                           | Pile<br>contal<br>e Modulus                                        |                                                           |                                                      |                                                                          |                                                                          |
|---------------------------|--------------------------|-------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Depth<br>Interval<br>(ft) | L-Pile<br>Layer<br>Type¹ | Unit<br>Weight<br>Y <sup>1</sup><br>(pcf) | ( )<br>or<br>Undrained<br>Cohesion<br>c <sub>u</sub><br>(psf) | k <sub>dry(sand)</sub><br>or<br>k <sub>static(clay)</sub><br>(pci) | k <sub>sat(sand)</sub><br>or<br>k <sub>cyclic(clay)</sub><br>(pci) | MFAD<br>Deformation<br>Modulus<br>E <sub>D</sub><br>(ksi) | Strain<br>Factor<br>ε <sub>s0</sub> /k <sub>rm</sub> | Allowable<br>End Bearing<br>Capacity <sup>2</sup><br>(FS ≥ 2.5)<br>(ksf) | Allowable<br>Unit Side<br>Resistance <sup>3</sup><br>(FS = 2.5)<br>(ksf) |
| 0 to 3                    | Stiff Clay               | 115                                       | 1,250                                                         | 500                                                                | 200                                                                | 0.7                                                       | 0.007                                                | N/A                                                                      | N/A                                                                      |
| 3 to 6                    | Stiff Clay               | 115                                       | 2,250                                                         | 1,000                                                              | 400                                                                | 2.5                                                       | 0.005                                                | N/A                                                                      | N/A                                                                      |
| 6 to 18.5                 | Stiff Clay               | 120                                       | 4,000                                                         | 2,000                                                              | 800                                                                | 5.0                                                       | 0.004                                                | 9.0                                                                      | 0.88                                                                     |
| 18.5 to 30                | Weak Rock <sup>₄</sup>   | 130                                       | 30°                                                           | N/A                                                                | N/A                                                                | 500                                                       | 0.0005                                               | 15.0                                                                     | 1.00                                                                     |

- 1. Interpretation of groundwater table should be approximated within the water level encountered during drilling and/or at the completion of drilling at this site. The depth interval where water was encountered during drilling within the applicable layer is indicated in the table with an asterisk (\*) and effective unit weights should be determined, where applicable. As such, L-Pile layer types of Clay "with" and "without" free water shall be used accordingly.
- 2. The recommended net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the pier base elevation.
- 3. Where provided, the unit side resistance between the pier and surrounding bearing material can be used to develop pier capacity in compression and uplift resistance. The pier weight and maximum allowable unit side resistance may be utilized to resist structural upward loadings. At minimum, the upper 5 feet of pier and one (1) pier diameter above the pier base should be ignored for unit side resistance in piers bearing in the clay soils stratum.
- 4. For weak rock, the following shall be utilized: Initial Modulus of Rock Mass = 7.5 to 35 ksi; Rock Quality Designation (RQD) = 10 to 60%; Uniaxial Compressive Strength = 100 to 500 psi; MFAD Rock Cohesion = 2 ksf; MFAD Rock/Concrete Bond Strength = 13 ksf.
- 5. Auger refusal was encountered, please review boring logs carefully. Auger refusal is defined as material that could not be penetrated with the drill rig equipment used on the project. Auger refusal material may be caused by large boulders, rock ledges, lenses, seams, or the top of parent bedrock. The drilling rig should be equipped with an earth and rock augers and other necessary tools to excavate, clean and level rock bottoms properly, and without construction delay. The contractor should assess the subsurface conditions prior to mobilizing and should be prepared to utilize other techniques such as rock coring to reach planned pier bottom depths.
- 6. Where minimum cyclic lateral pressures are anticipated, soil expansion uplift pressures of up to 0.25 to 0.5 ksf may develop and should be included in design for portion of pier extending through moderately to highly expansive soils within the upper 5 feet.

**PROJECT NO.:** 13070623 **BORING NO.:** B-5



| Depth<br>Interval<br>(ft) | L-Pile<br>Layer<br>Type <sup>1</sup> | Unit<br>Weight<br>Y <sup>1</sup><br>(pcf) | Friction<br>Angle<br>Φ<br>(°)<br>or<br>Undrained<br>Cohesion<br>c <sub>u</sub><br>(psf) | L-Pile<br>Horizontal<br>Subgrade Modulus                           |                                                                    |                                                           |                                                      |                                                                          |                                                                          |
|---------------------------|--------------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|
|                           |                                      |                                           |                                                                                         | k <sub>dry(sand)</sub><br>or<br>k <sub>static(clay)</sub><br>(pci) | k <sub>sat(sand)</sub><br>or<br>k <sub>cyclic(clay)</sub><br>(pci) | MFAD<br>Deformation<br>Modulus<br>E <sub>D</sub><br>(ksi) | Strain<br>Factor<br>ε <sub>50</sub> /k <sub>rm</sub> | Allowable<br>End Bearing<br>Capacity <sup>2</sup><br>(FS ≥ 2.5)<br>(ksf) | Allowable<br>Unit Side<br>Resistance <sup>3</sup><br>(FS = 2.5)<br>(ksf) |
| 0 to 6                    | Stiff Clay                           | 105                                       | 750                                                                                     | 100                                                                | N/A                                                                | 0.6                                                       | 0.01                                                 | N/A                                                                      | N/A                                                                      |
| 6 to 12                   | Stiff Clay                           | 120                                       | 2,500                                                                                   | 1,000                                                              | 400                                                                | 3.5                                                       | 0.005                                                | N/A                                                                      | 0.55                                                                     |
| 12 to 18.5                | Stiff Clay                           | 110                                       | 1,750                                                                                   | 500                                                                | 200                                                                | 1.0                                                       | 0.007                                                | 4.0                                                                      | 0.38                                                                     |
| 18.5 to 23.5              | Stiff Clay                           | 120                                       | 2,500                                                                                   | 1,000                                                              | 400                                                                | 2.5                                                       | 0.005                                                | 6.0                                                                      | 0.55                                                                     |
| 23.5 to 30                | Weak Rock <sup>4</sup>               | 130                                       | 30°                                                                                     | N/A                                                                | N/A                                                                | 500                                                       | 0.0005                                               | 15.0                                                                     | 1.00                                                                     |

1. Interpretation of groundwater table should be approximated within the water level encountered during drilling and/or at the completion of drilling at this site. The depth interval where water was encountered during drilling within the applicable layer is indicated in the table with an asterisk (\*) and effective unit weights should be determined, where applicable. As such, L-Pile layer types of Clay "with" and "without" free water shall be used accordingly.

2. The recommended net allowable bearing pressure is the pressure in excess of the minimum surrounding overburden pressure at the pier base elevation.

3. Where provided, the unit side resistance between the pier and surrounding bearing material can be used to develop pier capacity in compression and uplift resistance. The pier weight and maximum allowable unit side resistance may be utilized to resist structural upward loadings. At minimum, the upper 5 feet of pier and one (1) pier diameter above the pier base should be ignored for unit side resistance in piers bearing in the clay soils stratum.

- 4. For weak rock, the following shall be utilized: Initial Modulus of Rock Mass = 7.5 to 35 ksi; Rock Quality Designation (RQD) = 10 to 60%; Uniaxial Compressive Strength = 100 to 500 psi; MFAD Rock Cohesion = 2 ksf; MFAD Rock/Concrete Bond Strength = 13 ksf.
- 5. Auger refusal was encountered, please review boring logs carefully. Auger refusal is defined as material that could not be penetrated with the drill rig equipment used on the project. Auger refusal material may be caused by large boulders, rock ledges, lenses, seams, or the top of parent bedrock. The drilling rig should be equipped with an earth and rock augers and other necessary tools to excavate, clean and level rock bottoms properly, and without construction delay. The contractor should assess the subsurface conditions prior to mobilizing and should be prepared to utilize other techniques such as rock coring to reach planned pier bottom depths.
- 6. Where minimum cyclic lateral pressures are anticipated, soil expansion uplift pressures of up to 0.25 to 0.5 ksf may develop and should be included in design for portion of pier extending through moderately to highly expansive soils within the upper 5 feet.

# DRILLED PIER DESIGN PARAMETERS

**PROJECT NO.:** 13070623 **BORING NO.:** B-6

